The Market for Surface Science Instrumentation
Surface science technologies include instruments involved in analyzing and observing the chemical and physical surface properties of a material, especially through the use of various microscopy techniques. As described in our report, The Surface Science Market: Outlook to 2020, we examine market size, share and growth for optical, electron, scanning probe, confocal & advanced microscopes, as well as surface analyzers. Advanced techniques such as super resolution microscopy and digital microscopes are shaping this market that we project to grow at a CAGR average of 5.6% through 2020.
Surface Science Market Technologies*
Microscopy has long been described as the “eyes of science,” but new technologies are elevating the technique’s importance in both physical and life science research as well as many areas of manufacturing. Today’s advanced microscopes are not only characterizing nano- and bio-structures, but are also being used to image processes as they take place in situ.
Generally speaking, the surface science market encompasses three broad areas: life science, industrial and geology with the nature of the required optics and accessory modules differing across the diverse applications in each segment. The industrial sector is the largest source of demand, representing 38% of the total market of which the semiconductor industry is the most significant specific end-market.
Indeed, the semiconductor industry employs the widest variety of surface science techniques to measure the thickness, density, and composition of materials and identify impurities. That said, identifying defects, analyzing or predicting materials failure, detecting contaminants and profiling the depth of materials are all other applications found in energy, polymer, mining/metallurgy, and food manufacturing environments.
A great deal of attention has also been drawn to the advances in life science research made possible by microscopy which enable the visualization of individual molecules, whole tissues and organisms. Life scientists can study single snapshots or observe changes using time-lapse recordings that span milliseconds to days. There is special excitement surrounding functional brain imaging due to recent efforts to map the brain connectome and the US federal government’s funding of the BRAIN Initiative, set to receive a 73% boost in funding in the recently passed omnibus spending bill. Optogenetics is another area where microscopes are also used to illuminate a sample with light in precisely sculpted patterns of space, time, wavelength, and polarization. Light-responsive proteins enable scientists to turn neurons on or off selectively with unprecedented precision and introduce them into cultured cells or the brains of live animals to study the structure and function of neural networks.
Carl Zeiss, FEI (a Thermo Fisher company), Leica (Danaher), Nikon, and Olympus continue to be significant players in the market, with other companies such as Hitachi, Oxford Instruments, Bruker, and AMETEK active in specific niches. Modularity has emerged as a key competitive factor and a major determinant of overall profitability. In addition, microscopy manufacturers must also compete on product performance features such as optical quality and contrast features but opportunities for technological differentiation are declining. In this highly competitive market, distribution channels, price, installation, training and repair are increasingly important. Our report looks at the relative share of each of these vendors as well as the size and growth of this important market by technology, application, market segment and region.
*Acronyms
AFM – Atomic Force Microscopy
EPMA – Electronic Probe Micro-Analyzer
ESCA – Electron Spectroscopy for Chemical Analysis
FIB – Focused Ion Beam
SEM- Scanning Electron Microscope
SIMS – Secondary Ion Mass Spectrometry
ISS – Ion Scattering Spectroscopy
SNOM – Scanning Near-field Optical Microscope
STEM – Scanning Transmission Electron Microscope
STM – Scanning Tunneling Microscope
TEM – Transmission Electron Microscopy
UHV – Ultra High Vacuum